ترکیب روش شبکه های عصبی مصنوعی و مدل هیدرودینامیکی برای پیش بینی دقیق تر جریان رودخانه
Authors
abstract
در این تحقیق کاربرد روش سیستم عصبی مصنوعی در کاهش خطای مدل هیدرودینامیکی برای پیش بینی جریان رودخانه مورد بررسی قرارگرفته است. منطقه مورد مطالعه حوزه رینولدز کریک در جنوب غربی ایالت آیداهو در ایالات متحده آمریکا می باشد که دارای وسعتی معادل 239 کیلومتر مربع و اقلیم نیمه خشک است و به علت تغییرات بیش از حد بارندگی در نقاط مختلف این حوزه جریان رودخانه شدیداً متغیر است. در این تحقیق پس از کالیبراسیون و به کاربردن یک مدل هیدرودینامیکی یک بعدی برای پیش بینی وضعیت جریان در نقطه ای در پایین دست رودخانه یک مدل سیستم عصبی مصنوعی به عنوان پیش بینی کننده خطای مدل هیدرودینامیکی مورد استفاده قرار گرفت. با پیش بینی این خطا نتایج مدل هیدرودینامیکی به میزان قابل توجهی به مقادیر واقعی نزدیک تر شد. لازم به ذکر است که قبل از کاربرد ترکیبی این دو روش (مدل هیدرودینامیکی و سیستم عصبی مصنوعی) هر یک از این روش ها به تنهایی مورد استفاده قرار گرفته و نتایج حاصل از مقادیر واقعی مقایسه گردیده بود. نتایج حاصل از کاربرد ترکیبی این مدل از کیفیت به مراتب بالاتری نسبت به کاربرد هر یک از آن ها به تنهایی برخوردار است.
similar resources
ترکیب روش شبکههای عصبی مصنوعی و مدل هیدرودینامیکی برای پیشبینی دقیقتر جریان رودخانه
در این تحقیق کاربرد روش سیستم عصبی مصنوعی در کاهش خطای مدل هیدرودینامیکی برای پیشبینی جریان رودخانه مورد بررسی قرارگرفته است. منطقه مورد مطالعه حوزه رینولدز کریک در جنوب غربی ایالت آیداهو در ایالات متحده آمریکا میباشد که دارای وسعتی معادل 239 کیلومتر مربع و اقلیم نیمه خشک است و به علت تغییرات بیش از حد بارندگی در نقاط مختلف این حوزه جریان رودخانه شدیداً متغیر است. در این تحقیق پس از کالیبراسیو...
full textتحلیل عدم قطعیت مدل های شبکه عصبی و نروفازی در پیش بینی جریان رودخانه
پیش بینی آورد رودخانه در مدیریت منابع آب از اهمیت فراوانی برخوردار است، اما به دلیل عدم قطعیت بالا در عواملی که فرآیند بارش- رواناب را سبب میگردند، همواره با مشکلاتی همراه بوده است. یکی از روشهایی که میتواند این مشکل را تا حدی کاهش دهد، تحلیل عدم قطعیت پیشبینیهای انجام شده میباشد. این تحلیلها در مدلهای آماری سابقه طولانی دارند، ولی برای مدلهای شبکه عصبی و نروفازی کمتر مورد استفاده قرا...
full textترکیب شبکه های عصبی برای پیش بینی قیمت سهام
در این مقاله، یک مدل ابتکاری با ترکیب شبکه های عصبی مصنوعی (ANN) برای پیش بینی رفتار قیمت سهام پیشنهاد و اجرا می شود. این مدل ترکیبی، به صورت ساختار دو طبقه می باشد: شبکه های عصبی طبقه اول یا پیشگوهای پایه (Base Predictor) مسئول پیش بینی روزانه داده ها با ویژگی مختلف یک سهام می باشند و در طبقه دوم، شبکه دیگر، به عنوان ترکیب کننده پیش بینی نهایی را با بررسی و آنالیز اطلاعات پیشگوهای طبقه اول انج...
full textپیش¬بینی جریان روزانه با استفاده از شبکه¬های عصبی مصنوعی و عصبی- موجکی (مطالعه موردی: رودخانه باراندوزچای)
پیشبینی دقیق جریان در رودخانهها یکی از مهمترین ارکان در مدیریت منابع آبهای سطحی به ویژه جهت اتخاذ تدابیر مناسب در مواقع سیلاب و بروز خشکسالیها است. به دلیل اهمیت پیشبینی جریان رودخانه، در این تحقیق جریان روزانه رودخانهی باراندوزچای در دو ایستگاه بیبکران و دیزج طی یک دورهی آماری 20 ساله با استفاده از مدل عصبی- موجکی (WNN) که تلفیق آنالیز موجک و شبکه عصبی مصنوعی (ANN) میباشد، پیشبینی گرد...
full textبررسی ترکیب تبدیل های موجک و شبکه عصبی در پیش بینی جریان های سطحی تنگه هرمز
جریانهای سطحی اقیانوسی، نقش مهمی در انتقال گرما و تغییرات آب و هوایی دارد. ازاینرو، پیشبینی جریانهای دریایی از اهمیت بسزایی در اقیانوسشناسی برخوردار است. در این پژوهش با بهکارگیری شبکهعصبی و تکنیک تبدیل موجک به پیشبینی جریانهای سطحی تنگههرمز پرداخته شده است. بدین منظور دادههای ثبتشده این حوزه از نوامبر سال 1992 تا دسامبر سال 2014 با گام زمانی 5 روزه از سایت ناسا تهیه و با بهکا...
full textمدل ترکیبی شبکه های عصبی مصنوعی پیش خور و خود سازمانده کوهونن برای پیش بینی قیمت سهام
این مقاله ضمن ارائه مدلی ترکیبی از شبکه های عصبی مصنوعی، به بررسی توان پیش بینی کنندگی آنها در مقایسه با مدل های منفرد می پردازد. در این بررسی، با استفاده از شبکه های عصبی ترکیبی متشکل از شبکه های پیش خور و خود سازمانده کوهونن اقدام به پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام شده است. نتایج آزمایشات محاسباتی در پیش بینی قیمت سهام در بازار بورس تهران نشان می دهد ...
full textMy Resources
Save resource for easier access later
Journal title:
فصلنامه علمی- پژوهشی آب و فاضلابPublisher: مهندسین مشاور طرح و تحقیقات آب و فاضلاب
ISSN 1024-5936
volume 15
issue 1 2004
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023